

Welcome to your CDP Water Security Questionnaire 2023

W0. Introduction

W_{0.1}

(W0.1) Give a general description of and introduction to your organization.

JDE Peet's is the world's leading pure-play coffee and tea company, serving approximately 4,200 cups of coffee or tea per second. JDE Peet's unleashes the possibilities of coffee and tea in more than 100 markets with a portfolio of over 50 brands including L'OR, Peet's, Jacobs, Senseo, Tassimo, Douwe Egberts, OldTown, Super, Pickwick and Moccona. In 2022, JDE Peet's generated total sales of EUR 8.2 billion and employed a global workforce of more than 20,000 employees. Read more about our journey towards a coffee and tea for every cup at www.JDEPeets.com.

At JDE Peet's, we are driven by our purpose to unleash the possibilities of coffee and tea to create a better future. We recognise that our business activities impact the environment and the communities in which we operate. Sourcing our raw materials responsibly, taking care of the environment, and engaging our own employees and communities are all important principles that guide our business activities.

Coffee & tea creates possibilities for famers and their families, our suppliers, customers, consumers and our employees. By working together with our partners, we believe that our entire ecosystem can benefit and create a better future for all. Our sustainability strategy focuses on those sustainability issues that are most material to our business and where we can have the greatest impact.

W-FB0.1a/W-AC0.1a

(W-FB0.1a/W-AC0.1a) Which activities in the food, beverage, and tobacco and/or agricultural commodities sectors does your organization engage in?

Processing/Manufacturing

W0.2

(W0.2) State the start and	end date of the year i	for which you are reporting data.

Start date

End date

Reporting year January 1, 2022 December 31, 2022

W0.3

(W0.3) Select the countries/areas in which you operate.

Australia

Austria

Belarus

Belgium

Brazil

Bulgaria

China

Czechia

Denmark

Finland

France

Georgia

Germany

Greece

Hong Kong SAR, China

Hungary

Indonesia

Ireland

Isle of Man

Italy

Kazakhstan

Lithuania

Luxembourg

Malaysia

Mexico

Morocco

Myanmar

Netherlands

New Zealand

Norway

Philippines

Poland

Portugal

Russian Federation

Singapore

Slovakia

South Africa

Spain

Sweden

Switzerland

Thailand

Turkey
Ukraine
United Kingdom of Great Britain and Northern Ireland
United States of America
Viet Nam

W_{0.4}

(W0.4) Select the currency used for all financial information disclosed throughout your response.

EUR

W_{0.5}

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups over which operational control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

Yes

W0.6a

(W0.6a) Please report the exclusions.

Exclusion	Please explain
Non-	Our water-related reporting focuses on water in manufacturing, our most
manufacturing	material source of water withdrawals and water use. Water-related data is not
water use	including water use in our offices, warehouses or coffee store locations.

W0.7

(W0.7) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

Indicate whether you are able to provide a unique identifier for your organization.	Provide your unique identifier
Yes, an ISIN code	NL0014332678

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

	Direct use importance rating	Indirect use importance rating	Please explain
Sufficient amounts of good quality freshwater available for use	Vital	Neutral	Direct primary use: Good quality water is mostly used in our production process to produce instant and liquid coffee, e.g. in the extraction process for instant coffee. Furthermore, water is directly used as direct infeed to our cooling towers and different elements of our production processes such as cooling roasted coffee. In addition, water is used for heating, cooling and cleaning processes in all production sites. Access to good quality freshwater is important. Without access to good quality freshwater we would not be able to produce our instant and liquid products and we would have to invest significantly into alternative water access or treatment to improve water quality. Alternatively, we would have to shift production to sites that have good water quality available or stop production at those specific sites altogether, including the financial impact that comes with it. Indirect primary use: As coffee is mostly rainfed, the indirect primary use for coffee is less dependent on good quality freshwater. We invest through our farmer programs to decrease the dependency on irrigation and freshwater consumption and build resilience for future potential water scarcity. However, due to climate change and droughts we see that the lack of water availability can lead to issues in the supply, causing increased costs and inflating commodity prices. We expect that in the future water scarcity will only further increase and could become a more material issue within JDE Peet's.
Sufficient amounts of	Neutral	Not very important	Direct primary use: Recycled, brackish & produced water are used in our manufacturing

re evel e d	wherever possible One everyle is the use of
recycled,	wherever possible. One example is the use of
brackish and/or	groundwater in our cooling towers. Water is
produced water	reused several times before it is discharged. It is
available for use	neutral, rather than important or vital as there are
	other technical solutions that can deliver the same
	cooling benefits. Alternatively, freshwater use may
	be available.
	Indirect primary use: Throughout our value chain,
	to our knowledge, recycled, brackish and/or
	produced water are not used as part of the
	production processes.
	Future: With growing water stress globally due to
	climate change, it is likely that access to recycled,
	brackish &/or produced water will become more
	limited in the future. This could indirectly lead to
	supply impact, price increases due to shortages
	and disruption in our value chain due to growing
	competition for water.
	33

W-FB1.1a/W-AC1.1a

(W-FB1.1a/W-AC1.1a) Which water-intensive agricultural commodities that your organization produces and/or sources are the most significant to your business by revenue? Select up to five.

Agricultural commodities	% of revenue dependent on these agricultural commodities	Produced and/or sourced	Please explain
Other crop commodity, please specify Coffee	More than 80%	Sourced	As the world leading pure play coffee & tea company, over 98% of the water footprint of JDE Peet's is associated with coffee. (Based on an assessment using Water Footprint Network data.) Accordingly, other commodities are excluded as they are immaterial when compared to coffee. According to the Water Footprint Network, coffee is 96% rainfed.

W1.2

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

% of	Frequency of	Method of	Please explain
sites/facilities/operations	measurement	measurement	

Water	100%	Continuously	The water	Total water
withdrawals – total volumes			sources are known and recorded for all of our sites. The majority of sites measure water withdrawal volumes in real time through "inplace" flow meters for groundwater and surface water. Municipal water withdrawal volumes and sources data is obtained from water utility providers.	withdrawal volume is one of our environmental key performance indicators and is used to track improvements in water efficiency. We report this information at an internal global level quarterly, and report data externally on an annual basis.
Water withdrawals – volumes by source	100%	Continuously	The water sources are known and recorded for all of our sites. The majority of sites measure water withdrawal volumes in real time through "inplace" flow meters for groundwater and surface water. Municipal water withdrawal volumes and sources data is obtained from water utility providers.	Water withdrawal volumes by source are monitored at 100% of our operations. As most operations only source from municipal water sources, the different sources do not vary much over time.
Water withdrawals quality	100%	Monthly	Water withdrawal quality is checked with aerobic plate count (APV/TPC) and coliforms,	Water withdrawal quality microbiology testing is in place for all factories

			with set sample sizes, test methods and acceptance criteria. Factories are audited to ensure processes are in place.	and require monthly testing on elements such as ingredients, sanitation rinse, hand wash and reclaimed water. Further quarterly testing is done on incoming water from municipal sources, where we also allow for certification from municipal sources.
Water discharges – total volumes	100%	Continuously	We use flow meters to measure discharge volumes in real-time.	100% of our operational sites are monitored for this water aspect and this is considered part of the usual management for our sites.
Water discharges – volumes by destination	100%	Continuously	We use flow meters to measure discharge volumes in real time. The destination of the discharge is known and recorded for all sites	operational sites are monitored for this water aspect and this is considered part of the usual management for our sites. This aspect is relevant because our sites treat and discharge water volumes to freshwater bodies. We are committed to reducing water pollution. As part

Water discharges – volumes by treatment method	100%	Yearly	We keep records of the discharge treatment level and methods at all sites. When updates are made on the treatment levels, we are made aware globally and record the updates. All waste water treatment volumes are available in our central EMS and are consolidated	of our compliance with standards and regulations, we monitor the volumes of our discharges by destination. 100% of our operational sites are monitored for this water aspect and this is considered part of the usual facility management for our sites.
			communicated at least on annual bases.	
Water discharge quality – by standard effluent parameters	51-75	Quarterly	By end of 2023 we will be able to provide the 1st numbers of chemical oxygen demand (COD) discharge (mg/l) in tons.	We have started to put in place the right tracking for discharge quality, however we are not in a place to report on standard effluent paraments yet.
Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other	Not monitored			We have started to put in place the right tracking for discharge quality, however we are not in a place to report on

priority substances)				standard effluent paraments yet.
Water discharge quality – temperature	1-25	Continuously	For the 6 sites who discharge to surface water this is a key parameter and continuously tracked to local legislation.	This is not relevant for all sites, as most discharge their water to public sewer.
Water consumption – total volume	100%	Continuously	Water consumption is measured by subtracting water discharge from the water withdrawal targets. We are continuously optimising the water consumption data by installation of water meters in parts of the factory.	For all sites water withdrawal and discharge are measured as part of standard business practice.
Water recycled/reused	Not monitored			We are aware that small amounts of water is re-used and recycled e.g. grinders for coffee operation, cooling towers. In Q4 2023, we will be starting to track numbers to further raise awareness for this topic
The provision of fully-functioning, safely managed	Not monitored			We have piloted the WASH initiative in two sites (EU+China)

WASH services		and will develop
to all workers		programs to
		further roll out.

W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

	Volume (megaliters/ye ar)	Compariso n with previous reporting year	Primary reason for comparison with previous reporting year		Primary reason for forecast	Please explain
Total withdrawal s	6,909.19	Lower	Increase/decrea se in efficiency	Lower	Increase/decrea se in efficiency	Description for "compariso n with previous reporting year" and "five-year forecast" thresholds: Deviation +/- 0-1% = about the same; Deviation between +/- 2-5% = higher / lower; Deviation > +/- 5% = much higher / lower. In 2022 we have improved our water withdrawal efficiency by 6% vs.

Total	5,534.69	Lower	Increase/decrea	About	Increase/decrea	our 2020 baseline. This has been mainly due to the efforts of improving our water efficiency in our water intensive instant coffee production sites, leading to lower consumptio n. Our projections are that we will continue to deliver on our water withdrawal reduction in line with our 2030 target to deliver a total of 18% reduction vs. the 2020 baseline. Description
discharges	J,JJ4.U3	Lowel	se in efficiency	the same	se in efficiency	for "compariso n with previous reporting year" and "five-year forecast"

	Г	Г	
			thresholds:
			Deviation
			+/- 0-1% =
			about the
			same;
			Deviation
			between +/-
			2-5% =
			higher /
			lower;
			Deviation >
			+/- 5% =
			much
			higher /
			lower.
			In 2022 we
			have
			improved
			our water
			withdrawal
			efficiency
			by 6% vs.
			our 2020
			baseline.
			This has
			been
			mainly due
			to the
			efforts of
			improving
			our water
			efficiency in
			our water
			intensive
			instant
			coffee
			production
			sites,
			leading to
			lower
			consumptio
			n. Our
			projections
			are that we
			will
			VVIII

			continue to
			deliver on
			our water
			withdrawal
			reduction in
			line with our
			2030 target
			to deliver a
			total of 18%
			reduction
			vs. the
			2020
			baseline.
			We expect
			that in the
			future our
			water
			withdrawals
			and
			consumptio
			n will
			steadily
			decrease
			whilst our
			discharge
			will remain
			steady.
			This is
			mainly due
			to the
			dependenc
			e on our
			water
			cooling
			towers that
			withdraw
			and
			discharge a
			substantial
			part of our
			total water
			footprint.
			тоогрини.

Total	1,374.5	About the	Change in	Lower	Increase/decrea	Description
consumptio		same	accounting		se in efficiency	for
n			methodology			"compariso
						n with
						previous
						reporting
						year" and
						"five-year
						forecast"
						thresholds:
						Deviation
						+/- 0-1% =
						about the
						same;
						Deviation
						between +/-
						2-5% =
						higher /
						lower;
						Deviation >
						+/- 5% =
						much
						higher /
						lower.
						In 2022 we
						have
						improved
						our water
						withdrawal
						efficiency
						by 6% vs.
						our 2020
						baseline.
						This has
						been
						mainly due
						to the
						efforts of
						improving
						our water
						efficiency in
						our water
						intensive
						instant

			coffee
			production
			sites,
			leading to
			lower
			consumptio
			n. Our
			projections
			are that we
			will
			continue to
			deliver on
			our water
			withdrawal
			reduction in
			line with our
			2030 target
			to deliver a
			total of 18%
			reduction
			vs. the
			2020
			baseline.

W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress, provide the proportion, how it compares with the previous reporting year, and how it is forecasted to change.

	Withdraw als are from areas with water stress	% withdra wn from areas with water stress	Comparis on with previous reporting year	Primary reason for comparison with previous reporting year	Five- year foreca st	Primary reason for forecast	Identificati on tool	Please explain
Ro w 1	Yes	26-50	Lower	Increase/decre ase in efficiency	Much higher	Other, please specify Sites which are not in water stress now	WRI Aqueduct	Description n for "comparis on with previous reporting year" and "five-year forecast"

		will fall	thresholds
		in this	: Deviation
		catego	+/- 0-1% =
		ry in	about the
		the	
		future	same;
			Deviation
			between
			+/- 2-5% =
			higher /
			lower;
			Deviation
			> +/- 5% =
			much
			higher /
			lower.
			In line with
			our water
			withdrawal
			efficiency
			target, we
			expect a
			reduction
			of 18% by
			2030 in
			our overall
			water
			withdrawal
			. In the
			near
			future this
			should
			decrease
			our total
			water
			withdrawal
			in areas of
			water
			stress,
			however
			as more
			sites get
			into water
			stressed
			areas, the
			baseline

them. Based of the analysis with WRI Aqueduct, we've build different scenarios on what the future will look like from an optimistic, business-as-usual and pessimisti c scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas, sites are in water stressed areas, sites are in water stressed areas,					shifts with
Based of the analysis with WRI Aqueduct, we've build different scenarios on what the future will look like from an optimistic, business-as-sual and pessimisti c c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
the analysis with WRI Aqueduct, we've build different scenarios on what the future will look like from an optimistic, business- as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas, Currently 12 of our 43 sites are in water stressed areas,					tnem.
the analysis with WRI Aqueduct, we've build different scenarios on what the future will look like from an optimistic, business- as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas, Currently 12 of our 43 sites are in water stressed areas,					
analysis with WRI Aqueduct, we've build different scenarios on what the future will look like from an optimistic, business- as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
with WRI Aqueduct, we've build different scenarios on what the future will look like from an optimistic, business- as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
Aqueduct, we've build different scenarios on what the future will look like from an optimistic, business-as-usual and pessimisti c c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
we've build different scenarios on what the future will look like from an optimistic, business-as-usual and pessimisti c c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
build different scenarios on what the future will look like from an optimistic, business-as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					Aqueduct,
different scenarios on what the future will look like from an optimistic, business-as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					we've
scenarios on what the future will look like from an optimistic, business-as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					build
on what the future will look like from an optimistic, business-as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					different
the future will look like from an optimistic, business-as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					scenarios
will look like from an optimistic, business-as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					on what
like from an optimistic, business-as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					the future
like from an optimistic, business-as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					will look
an optimistic, business-as-usual and pessimisti c c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
optimistic, business-as-usual and pessimisti c c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					an
business- as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
as-usual and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
and pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
pessimisti c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
c scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
scenario. In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
In all three scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
scenarios, we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
we see that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
that more sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
sites move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
move into water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
water stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
stressed areas. Currently 12 of our 43 sites are in water stressed areas,					
Currently 12 of our 43 sites are in water stressed areas,					
Currently 12 of our 43 sites are in water stressed areas,					
12 of our 43 sites are in water stressed areas,					areas.
12 of our 43 sites are in water stressed areas,					
43 sites are in water stressed areas,					
are in water stressed areas,					
water stressed areas,					
stressed areas,					
areas,					
howayor					
					however
we expect					
in the near					
future 17					
out of 43					out of 43

				sites to be
				in water
				stressed
				areas.
				This
				includes
				our only
				site that
				uses
				ground
				water in
				its cooling
				process;
				which has
				a very
				high
				impact
				water
				withdrawal
				s in water
				stressed
				areas. We
				are
				already
				actively
				managing
				the water
				use of this
				site and
				expect the
				largest
				decreases
				in this
				area.

W-FB1.2e/W-AC1.2e

(W-FB1.2e/W-AC1.2e) For each commodity reported in question W-FB1.1a/W-AC1.1a, do you know the proportion that is produced/sourced from areas with water stress?

Agricultural commodities	The proportion of this commodity produced in areas with water stress is known	The proportion of this commodity sourced from areas with water stress is known	Please explain
Other commodities from W-FB1.1a/W-	Not applicable	Yes	JDE Peet's does not produce the commodity

AC1.1a, please		in question, we only
specify		source through indirect
Coffee		sources.

W-FB1.2g/W-AC1.2g

(W-FB1.2g/W-AC1.2g) What proportion of the sourced agricultural commodities reported in W-FB1.1a/W-AC1.1a originate from areas with water stress?

Agricultural commodities	% of total agricultural commodity sourced from areas with water stress	Please explain
Other sourced commodities from W-FB1.2e/W-AC1.2e, please specify Arabica coffee	1-10	Through our inclusive, indirect sourcing model, we are not vertically integrated and as such can trace back only to regional level. As JDE Peet's we globally source about 10% of all coffee and have a footprint widely dispersed globally, it is fair to assume that the production and sourcing will be similar numbers. Analysis from the WRI Aqueduct Water and Food tool shows that there are 29,000 hectares of irrigated arabica coffee growing under high and extremely high water stress conditions. The total production of arabica is about 289,000 tonnes, where 9,200 and 13,000 tonnes are produced in high and extremely high water stressed areas. (9,200+13,000)/289,000 shows about 8% of products are produced in water stressed areas. This number is expected to remain relatively flat in the future, as most coffee growing countries don't face high water stress risks.
Other sourced commodities from W-FB1.2e/W- AC1.2e, please specify Robusta coffee	0%	Analysis from the WRI Aqueduct Water and Food tool shows that there are 260 hectares of irrigated robusta coffee growing under high and extremely high water stress conditions. The total production of robusta is about 181,000 tonnes, where 600 tonnes are produced in high water stressed areas. 600/181,000 shows about 0.3% of products produced in water stressed areas. This number is expected to remain relatively flat in the future, as most coffee growing countries don't face high water stressed areas, we by definition do not source robusta from water stressed areas. This number is expected to remain relatively flat in the future, as most coffee growing countries don't face high water stress risks.

W1.2h

(W1.2h) Provide total water withdrawal data by source.

	Relevance	Volume (megaliters/year)	Comparison with previous reporting year	Primary reason for comparison with previous reporting year	Please explain
Fresh surface water, including rainwater, water from wetlands, rivers, and lakes	Relevant	0	Lower	Other, please specify Changed water source away from surface water towards municipal water	
Brackish surface water/Seawater	Not relevant				JDE Peet's does not withdraw water from bracking surface water or seawater
Groundwater – renewable	Relevant	1,572.77	Lower	Increase/decrease in efficiency	
Groundwater – non-renewable	Not relevant				JDE Peet's does not withdraw water from non- renewable groundwater
Produced/Entrained water	Not relevant				JDE Peet's does not withdraw water from produced or entrained water
Third party sources	Relevant	5,342.8	Lower	Increase/decrease in efficiency	

W1.2i

(W1.2i) Provide total water discharge data by destination.

	Relevance	Volume (megaliters/year)		Primary reason for comparison with previous reporting year	Please explain
Fresh surface water	Relevant	2,100.98	About the same	Other, please specify No change	In line with last year, the fresh surface water discharge is primarily driven by the cooling water of one of our instant factories. As the cooling water is not consumed and production is relatively flat, there is no big change expected in the future.
Brackish surface water/seawater	Not relevant				JDE Peet's does not discharge water to bracking surface water or seawater
Groundwater	Not relevant				JDE Peet's does not discharge water to groundwater
Third-party destinations	Relevant	3,433.33	Lower	Increase/decrease in efficiency	In line with our 18% reduction target for water intensity by 2030, we have decreased about 2% in water withdrawal, a

	1% in
	consumption
	and thus a 3%
	in water
	discharge.

W1.2j

(W1.2j) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

	Relevance of treatment level to discharge	Please explain
Tertiary treatment	Relevant but volume unknown	In 2023, we started gathering data on the treatment levels of our waste-water discharge. The treatment levels used are not completely clear yet, however we know which factories are treating and which ones do not have the right level of treatment in place yet. Treatment levels differ between factories, as the processing and local requirement differ per site. We aim to get full clarity on the treatment levels by next year's report.
Secondary treatment	Relevant but volume unknown	In 2023, we started gathering data on the treatment levels of our waste-water discharge. The treatment levels used are not completely clear yet, however we know which factories are treating and which ones do not have the right level of treatment in place yet. Treatment levels differ between factories, as the processing and local requirement differ per site. We aim to get full clarity on the treatment levels by next year's report.
Primary treatment only	Relevant but volume unknown	In 2023, we started gathering data on the treatment levels of our waste-water discharge. The treatment levels used are not completely clear yet, however we know which factories are treating and which ones do not have the right level of treatment in place yet. Treatment levels differ between factories, as the processing and local requirement differ per site. We aim to get full clarity on the treatment levels by next year's report.
Discharge to the natural environment without treatment	Relevant but volume unknown	In 2023, we started gathering data on the treatment levels of our waste-water discharge. The treatment levels used are not completely clear yet, however we know which factories are treating and which ones do not have the right level of treatment in place yet. Treatment levels differ between factories, as the processing and local requirement differ per site. We aim to get full clarity on the treatment levels by next year's report.
Discharge to a third party without treatment	Relevant but volume unknown	In 2023, we started gathering data on the treatment levels of our waste-water discharge. The treatment levels used are not completely clear yet, however we know which factories are

		treating and which ones do not have the right level of treatment in place yet. Treatment levels differ between factories, as the processing and local requirement differ per site. We aim to get full clarity on the treatment levels by next year's report.
Other	Not relevant	

W1.3

(W1.3) Provide a figure for your organization's total water withdrawal efficiency.

	Revenue	Total water withdrawal volume (megaliters)	Total water withdrawal efficiency	Anticipated forward trend
Row 1	8,151,000,000	6,915.62	1,178,636.18880158	The water withdrawal efficiency is expected to improve, as we expect to substantially grow our revenues revenue whilst decreasing our water withdrawal volume in line with our 18% water withdrawal reduction by 2030 target.

W-FB1.3/W-AC1.3

(W-FB1.3/W-AC1.3) Do you collect/calculate water intensity for each commodity reported in question W-FB1.1a/W-AC1.1a?

Agricultural commodities	Water intensity information for this produced commodity is collected/calculated	Water intensity information for this sourced commodity is collected/calculated	Please explain
Other commodities from W-FB1.1a/W- AC1.1a, please specify Coffee	Not applicable	Yes	JDE Peet's does not produce the commodity in question, we only source through indirect sources.

W-FB1.3b/W-AC1.3b

(W-FB1.3b/W-AC1.3b) Provide water intensity information for each of the agricultural commodities identified in W-FB1.3/W-AC1.3 that you source.

Agricultural commodities

Other sourced commodities from W-FB1.3/W-AC1.3, please specify

Coffee

Water intensity value (m3/denominator)

18.9

Numerator: Water aspect

Total water withdrawals

Denominator

Kilograms

Comparison with previous reporting year

About the same

Please explain

Following the assessment from the Water Footprint Network, the water intensity of coffee is about 18.900 liter per kilo of coffee. This consists of 96% green water, 1% blue water and 3% grey water. Hence this value does not vary much from year to year until we develop further engagement with our suppliers.

W1.4

(W1.4) Do any of your products contain substances classified as hazardous by a regulatory authority?

		Products contain hazardous substances	Comment
F 1	Row	No	JDE Peet's is only involved in the production of coffee and tea, where hazardous substances do not occur.

W1.5

(W1.5) Do you engage with your value chain on water-related issues?

	Engagement	Primary reason for no engagement	Please explain
Suppliers	No		
Other value chain partners (e.g., customers)	No	Important but not an immediate business priority	

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

	Water-related regulatory violations	Fines, enforcement orders, and/or other penalties	Comment
Row	Yes	Enforcement orders or other	Total enforcement orders within JDE
1		penalties but none that are	Peet's was <5K, so none were
		considered as significant	considered significant.

W3. Procedures

W3.1

(W3.1) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

	Identification and classification of potential water pollutants	Please explain
Row 1	Unknown	

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Value chain stage

Direct operations

Coverage

Full

Risk assessment procedure

Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment

Annually

How far into the future are risks considered?

More than 6 years

Type of tools and methods used

Tools on the market
Enterprise risk management
International methodologies and standards
Databases

Tools and methods used

Ecolab Water Risk Monetizer
Water Footprint Network Assessment tool
WRI Aqueduct
WWF Water Risk Filter
Other, please specify
ARGOS

Contextual issues considered

Water availability at a basin/catchment level
Water quality at a basin/catchment level
Stakeholder conflicts concerning water resources at a basin/catchment level
Implications of water on your key commodities/raw materials
Water regulatory frameworks
Access to fully-functioning, safely managed WASH services for all employees

Stakeholders considered

Employees
Local communities
Regulators
Suppliers
Water utilities at a local level

Comment

On an annual basis, we assess the water risks at all our manufacturing locations. Through a combined analysis of WRI Aqueduct, the Water Footprint Network Assessment tool and an external analysis through our insurers through ARGOS, we are able to define a risk profile of all manufacturing sites. Combining that with the dependency of water and annual consumption, we define which sites should address water risks in their area.

Additionally, we use the WRI Aqueduct water risk projections for 2030 and 2040 to get a perspective of the future risks of our manufacturing sites. This drives local action to manage water dependency, water risks and potential future water stress.

The Water Footprint Network methodology is used to assess the water footprint of key agricultural commodities, which allows us to steer primary focus on specific commodities that have higher water dependency.

Finally we use the WWF Water Risk Filter to define with operating sites will run into water scarcity in the future.

Value chain stage

Supply chain

Coverage

Full

Risk assessment procedure

Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment

Annually

How far into the future are risks considered?

More than 6 years

Type of tools and methods used

Tools on the market International methodologies and standards Databases Other

Tools and methods used

WRI Aqueduct
Internal company methods
External consultants
Materiality assessment
Other, please specify
Supplier self-assessments

Contextual issues considered

Water availability at a basin/catchment level
Stakeholder conflicts concerning water resources at a basin/catchment level
Implications of water on your key commodities/raw materials

Stakeholders considered

Local communities
Suppliers

Comment

On an annual basis, we assess the water risks of our full supply chain. Through a combined analysis of WRI Aqueduct and an external analysis from NGO Enveritas, we are able to update the risk profile of specific origins and regions. This gives us the full picture on how to adjust our sourcing (if any) and assess the materiality of the risk.

W3.3b

(W3.3b) Describe your organization's process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

Jul	Patienale for	Fundamental and	Fundamentian of	Desision medium
	Rationale for	Explanation of	Explanation of	Decision-making
	approach to risk	contextual issues	stakeholders	process for risk
	assessment	considered	considered	response
Row	In the value chain,	Water availability at	Employees are at the	The information on all
1	only our own	catchment is	heart of the	different sources is
	operations and	considered in both the	company, WASH is	collected and combined
	upstream have been	direct operations and	put in place the	by our Safety Health
	considered due to the	the value chain. The	ensure safe washing,	and Environment Lead,
	materiality and sphere	ability to extract water	sanitation and	who creates an
	of influence of the	locally is essential for	hygiene across the	overview on a monthly
	company.	the production	company. Employees	bases on our water
	Downstream, water is	process and irrigation	are also most	status. Any deepdives
	primarily used with our	in specific coffee	knowledgeable on	on sites specific issues
	products to prepare	sourcing regions.	how to manage water	are led by her. The
	the coffee or tea. For	Water quality at	best in the factories.	Global Sustainability
	brewing our products,	catchment is	Local communities	Program Lead ensures
	an amount of water is	considered as part of	are considered as	the risk assessment is
	required which can	the risk assessment	part of the direct	performed through an
	only be limited to a	in our direct	operationally	annual update of all
	certain degree.	operations. Water	impacted, e.g.	tools, considers
		quality treatment is	through water	updates versus last
	We have taken full	one of our	pollution in our	year and reports out on
	coverage due to the	commitments and	operations and	the findings.
	global scale of JDE	hence a priority to	considered water	When risks are deemed
	Peet's.	manage.	scarcity. In the value	material enough, they
		Stakeholder conflicts	chain we consider	are reported to the
	Tools used:	concerning water	local communities as	executive level to which
	Ecolab Water Risk	resources are	the farmers and their	it is concerned. They
	Monetizer: Assess and	considered as part of	families.	are in power to act as
	review the	the regulatory and	Regulators are	they see fit, for instance
	methodology how to	reputational risk	considered as we	through implementing a
	monetize water risk.	indicators of WRI	have to comply to	water policy with
	Water Footprint	Aqueduct. It adds a	local legislation on	subsequent
	Network Assessment	local qualitative lens	permits and pollution	commitments. As water
	Tool: Determine water	to the quantitative	levels.	risks have not
	footprint of a kilo of	work.	Suppliers are the	materialized much, the
	coffee and split in	Implications of water	farmers that grow our	Enterprise Risk
	green, blue and grey	on your key	coffee, they are to	Management
	streams.	commodities are	the continued	Framework is not used
	WRI Aqueduct:	considered as coffee	existence of the	yet as a means to

Assess projection on current and future water stress levels per site and commodity. WWF Risk Filter: Assess water scarcity risk in combination with WRI Aqueduct. ARGOS: Determine risk as seen by insurers. External consultants: Enveritas provides detailed data of the coffee regions on a number of water related topics, such as water efficiency, buffer zones and run-off. Materiality assessment: Through our materiality assessment we have determined water to be material in our own operations, but less at risk in the full value chain.

Combining all tools with our internal knowledge on coffee and tea provides a clear direction on risk and way forward.

Risk classification:
The CDP response is
each year reported out
as part of the
consolidated water
review. The findings
from the tools are
shared back with the
ERM team and

is dependent on water to grow. The availability of green water is essential, droughts can cause impacts on crop yield and hence have a financial impact. Water regulatory frameworks such as the SDGs and UN **Global Compact** Water Resilience Coalition are used as guidance on best practice to follow and strategy setting. status Access to WASH is new in the considerations, although lower risk, it is complementary to the full strategy. We believe all our employees should have access to safe WASH conditions. hence putting a structure in place to track this is good practice.

coffee supply. Their ability to grow coffee, now and in the future, is essential. Water utilities at local level are considered when looking at local risk and changing water stress levels. We aim to be in touch when levels become drastic.

structure risks as they come up and they remain in the annual refresh.

business continuity		
lead		

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

No

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

Our organization defines substantive financial or strategic impact as significant effects on our business that can materially affect our financial performance or long-term strategic objectives. This impact can manifest in various ways, such as:

- 1. Financial Implications: It includes direct financial costs or losses associated with water-related risks, such as increased operational expenses, supply chain disruptions, additional investments in water management infrastructure, or legal and regulatory penalties. It also considers potential revenue reductions due to decreased market demand or pricing pressures resulting from water-related issues.
- 2. Strategic Implications: This refers to the broader implications for our long-term business strategy, reputation, and relationships with stakeholders. It encompasses factors like reputational damage resulting from negative water-related incidents, loss of customer trust, diminished investor confidence, or limitations on future growth opportunities in water-stressed regions.

By considering both financial and strategic impacts, we aim to holistically evaluate the significance of water-related risks and ensure effective risk management practices are in place to safeguard our business interests and sustainability goals.

W4.2b

(W4.2b) Why does your organization not consider itself exposed to water risks in its direct operations with the potential to have a substantive financial or strategic impact?

	Primary reason	Please explain
Row	Risks exist, but	Among the 12 manufacturing facilities situated in water-stressed areas, 3
1	no substantive	facilities exhibit substantial water withdrawal. Furthermore, 2 additional
		facilities, characterized by significant water withdrawal, are located in areas

impact	predicted to face water stress in the future as per the WRI Aqueduct Water
anticipated	Risk Atlas.
	We are committed to thoroughly assessing and monitoring the financial and strategic implications of water risks across all our business operations,
	with a particular emphasis on these specific locations. Moreover, we continuously strive to enhance the water efficiency of our operations.
	In 2 of the 5 facilities, we anticipate no significant near-term impacts from
	water-related risks, and future projections indicate a reduction in water
	stress. As for the remaining 3 sites, we actively collaborate with stakeholders, including local government, and have implemented
	mitigation plans. Consequently, we currently evaluate our exposure to
	water risks with substantial financial or strategic consequences as limited.

W4.2c

(W4.2c) Why does your organization not consider itself exposed to water risks in its value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact?

	Bissesses Blassesses		
	Primary reason	Please explain	
Row 1	Risks exist, but no substantive impact anticipated	In our TCFD analysis, we have thoroughly assessed the physical and transition risks related to water, encompassing aspects such as quantity, quality, and access. According to projections from both RCP 4.5 and RCP 8.5 scenarios, climate change is anticipated to bring about altered precipitation patterns, leading to droughts and heightened water stress in coffee cultivation regions. Consequently, the scarcity of water is expected to reduce the availability of water for local bean irrigation and washing processes.	
		Dependent on the severity of the scenario, this scarcity could impact the availability of both washed and unwashed arabica beans, resulting in several outcomes including increased prices, reduced availability, and a shift towards more resilient coffee species. Unlike arabica, robusta coffee beans are better suited to higher temperatures and do not require water-intensive washing. In the scenario of higher arabica commodity prices, consumers could gradually shift in demand towards the more affordable robusta beans.	
		The analysis conducted using the WRI Aqueduct Food tool enables the identification of key sourcing regions that are under water stress. Upon mapping our sourcing regions for arabica and robusta coffee against these at-risk regions, it is evident that JDE Peet's is not exposed to areas of high or extremely high water stress. According to the WRI Aqueduct Food tool, arabica and robusta coffee are expected to face less exposure to drought	

compared to average crops. However, it is important to note that Indonesia and Uganda are identified as sourcing regions with relatively higher drought risk. To mitigate this risk, our sourcing from these regions is limited to less than 10% and diversified across a range of countries, ensuring future supply resilience.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity

Efficiency

Primary water-related opportunity

Improved water efficiency in operations

Company-specific description & strategy to realize opportunity

In line with our 2% water efficiency improvement target, we aim to decrease our dependency on water at a local level. Annually we have a cycle to define with all our factories which opportunities would exist to improve water efficiency in their operations. This creates a longlist of opportunities, of which some can be implemented directly e.g. changing settings to reduce water used in specific production processes. Others require small capital expenditures e.g. to remove leakage in the process or refurbishment to newer versions of machine parts. However, also larger capital expenditures may take place. One example has been the implementation of a 2SN primary feed water installation in our Hemelingen instant factory which led to an annual reduction of 32,000M3 in water consumption and a subsequent positive financial impact due to decreased cost of water use.

Estimated timeframe for realization

1 to 3 years

Magnitude of potential financial impact

Low-medium

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

250,000

Potential financial impact figure – maximum (currency)

1,000,000

Explanation of financial impact

Taking the average water price of the countries of factories, multiplied by the 2% reduction and multiplied by our total operational water footprint adds up to a range of 250,000 euros up to 1,000,000 euros in savings that can be achieved from implementing a 2% reduction of our water use year on year.

W6. Governance

W6.1

(W6.1) Does your organization have a water policy?

Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

Row Company- Description of the scope (including value chain stages) covered	explain
by the policy Description of business dependency on water Description of business impact on water Commitment to align with international frameworks, standards, and widely-recognized water initiatives Commitment to prevent, minimize, and control pollution Commitment to reduce or phase-out hazardous substances Commitment to reduce water withdrawal and/or consumption volumes in direct operations Commitment to safely managed Water, Sanitation and Hygiene (WASH) in the workplace Commitment to stakeholder education and capacity building on water security Commitment to water stewardship and/or collective action Commitment to the conservation of freshwater ecosystems Reference to company water-related targets Acknowledgement of the human right to water and sanitation	

Recognition of environmental linkages, for example, due to	
climate change	

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization? $_{\mbox{\scriptsize Yes}}$

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

Position of individual or committee	Responsibilities for water-related issues
Other C-Suite Officer	Our Chief Supply Officer is in the end responsible for the delivery of our water related commitments on availability, quality and access. In his capacity, the CSO has approved several investments related to water efficiency and water quality, among others the implementation of improved water quality capabilities in the APAC region. The CSO has been responsible for the sign-off of the water policy and ensures the enactment through delegation to his team.

W6.2b

(W6.2b) Provide further details on the board's oversight of water-related issues.

	Frequency that water-related issues are a scheduled agenda item	Governance mechanisms into which water-related issues are integrated	Please explain
Row 1	Scheduled - some meetings	Monitoring implementation and performance Monitoring progress towards corporate targets Overseeing major capital expenditures Reviewing and guiding corporate responsibility strategy Reviewing and guiding risk management policies	The Board regularly, but at least two times per year, (i) oversees the implementation of the sustainability strategy and policies, (ii) reviews the progress on ESG-related matters, including water-related issues on the company's sustainability dashboard as well as responsible sourcing, climate action, packaging, waste, health and safety, and diversity, equity and inclusion, amongst others, and (iii) monitors the company's progress against ESG-related goals and targets. In addition, the Audit Committee reviews ESG-/sustainability-related risks as part of the enterprise risk management process. The full cycle is completed every year with a discussion in the

F	Reviewing and	Executive Committee, and subsequently presented
g	guiding strategy	to the Audit Committee and discussed at Board
		level.

W6.2d

(W6.2d) Does your organization have at least one board member with competence on water-related issues?

	Board member(s) have competence on water-related issues	Criteria used to assess competence of board member(s) on water-related issues
Row 1	Yes	One of our Sustainability Board Contacts serves as Executive Vice President, Corporate & Legal Affairs and General Counsel for Mondelēz International. In her role, she oversees the company's global legal, compliance, corporate reputation and ESG agendas, including public and government affairs, internal and external corporate communications, sustainability, community and foundation efforts.

W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)

Chief Executive Officer (CEO)

Water-related responsibilities of this position

Frequency of reporting to the board on water-related issues

Quarterly

Please explain

The Chief Executive Officer is responsible for assessing, reporting and managing any significant water-related risks. On quarterly bases, the Executive Committee is informed of all most material risks, how to mitigate them and the actions taken. This is a consolidation of inputs from the Enterprise Risk Management process and the Sustainability Program Review that highlight any topics that need to be brought to the attention. The ERM structure allows for direct assessment of water-related risks where the CEO together with his Executive Committee assesses the risk appetite for such risks. This forward-looking approach allows for risk mitigation before the fact. With regards to the Sustainability Program Review, a quarterly update is given on the company's performance against set KPIs (i.e. water efficiency). The Executive Committee is then able to set directions on the required course of action.

Name of the position(s) and/or committee(s)

Other C-Suite Officer, please specify Chief Supply Officer

Water-related responsibilities of this position

Frequency of reporting to the board on water-related issues

As important matters arise

Please explain

The CSO is responsible for ensuring a continued supply of coffee from our origins up to our customers. JDE Peet's being a globally spread organization, risks and issues related to water may arise at all times. Flooding, drought or issues with water quality/quantity may arise at all times and final accountability on managing those risks lies with the Chief Supply Officer. When relevant, these issues may be raised to the remaining Executive Committee members.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

	Provide incentives for management of water-related issues	Comment
Row 1	Yes	We have a bonus mechanism related to ESG and compliance performance. The bonus criteria for management includes the following clause: "The Remuneration Committee, upon recommendation of the CEO, may make use of its right to adjust up to 25% of the expected bonus payout up or down for one of the following reasons: (i) Quality delivery (quality market share, quality shape, brand performance and investing for the future), (ii) ESG, or (iii) Extraordinary circumstances."

W6.4a

(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

	Role(s) entitled to incentive	Performance indicator	Contribution of incentives to the achievement of your organization's water commitments	Please explain
Monetary	Chief	Reduction of	The JDE Peet's CEO-led Common	The incentive was
reward	Executive	water	Grounds programme includes a	linked to the delivery
		withdrawals -	number of different KPIs, of which	of the 2% annual

	Officer (CEO) Other C- suite Officer Chief Supply Officer	direct operations	the water intensity target is one. As each C-suite employee has its own targets embedded in its annual targets, this contributes to the delivery of the targets in priority setting and ensuring the teams reporting to the C-suite are focused on the right topics. Specifically, the engagement of our CEO and CSO in our water journey has helped the improvement of our water efficiency target to include a baseline and target year, and they have been imperative in the approval of the water policy. Also, they have enabled the creation of a capital expenditure roadmap, to ensure the delivery of our commitment in the future.	reduction of the water intensity in the year 2023, focused on the manufacturing footprint. Although not explicitly linked to a financial reward, it is a consideration in the overall delivery of the sustainability KPIs set for the CEO and CSO.
Non- monetary reward	No one is entitled to these incentives			

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

Yes, trade associations
Yes, funding research organizations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

At JDE Peet's, we unleash the possibilities of coffee and tea to create a better future. Sourcing our raw materials responsibly, taking care of the environment, and engaging our own employees and communities are all important principles that guide our business activities. We actively engage with multiple organisations, trade associations and industry platforms to enhance our societal impact. These partnerships form a central pillar of our stakeholder engagement so that we effectively address the broader sustainability challenges which go beyond our immediate supply chain. The participation in these fora is managed by our internal Sustainability governance structure.

Our participation in these organisations, including membership on an organisation's board, does not mean that we endorse every position these organisations take on an issue. From time to time, our corporate positions may differ from those of the organisations of which we are a member. We engage with the respective organisation in those instances to express our views.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

No, but we plan to do so in the next two years

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

	Are water- related issues integrated?	Long-term time horizon (years)	Please explain
Long-term business objectives	Yes, water-related issues are integrated	5-10	Our long-term business objective is driven by our purpose: Unleash The Possibilities Of Coffee & Tea To Create A Better Future. We've defined this Better Future through our Common Grounds programme which is centered around three pillars, Responsible Sourcing, Minimising Footprint and Connecting People. Where our Minimising Footprint pillar focuses on minimizing our environmental impact through climate action, sustainable packaging, zero waste and water stewardship. On water, we see increased water scarcity, water stress and continued dependency on fresh water. As is reported in our annual report, SDG 6 is one of the main development goals to which JDE Peet's aims to contribute, focusing on a 2030 timescale. Our operations focus on improving the water efficiency in our factories, which is reported on quarterly bases to the Executive Committee and twice per year to the board where long-term business objectives are discussed.
Strategy for achieving long-term objectives	Yes, water- related issues are integrated	5-10	The commitments made within our Common Grounds program allow our stakeholders to review, address and comment these and hold us accountable for the progress on these. Each member of the Executive

			Committee has its own commitments and they collectively ensure through a systematic way that they course correct when and where needed. For capital expenditures where water is considered material, water withdrawal is considered as part of the capex approval process.
Financial planning	Yes, water- related issues are integrated	5-10	Anticipating the impact of climate change, it is expected that water availability will be constraint. As we see the interconnection between coffee yield, carbon impact and water use; our investments in R&D, technology and engineering aim to improve all three at the same time. Our R&D and technology roadmaps are aimed to future-proof our factories for the decades to come, whilst our capital expenditures could last over 20 to 30 years. Considerations in achievable returns are heavily related to the expected yield improvement, carbon and water reduction.

W7.2

(W7.2) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

Water-related CAPEX (+/- % change)

271

Anticipated forward trend for CAPEX (+/- % change)

276

Water-related OPEX (+/- % change)

4

Anticipated forward trend for OPEX (+/- % change)

4

Please explain

The water related CAPEX has significantly increased from 2021 to 2022 due to further investments in water efficiency, specifically the installation and finalization of the last column condensate system in our Joure instant production facility. Secondly, we invested in the drainage and improvement of the waste water treatment in our Johor factory. In our latest estimates the costs revolving the waste water treatment in Johor will to grow further in 2023. On OPEX, our spend is expected to remain relatively flat

due to a combination of sales growth, our efficiency target (18% by 2030) and price increases.

W7.3

(W7.3) Does your organization use scenario analysis to inform its business strategy?

	Use of scenario analysis	Comment
Row 1	Yes	The Water Risk Filter is an interactive mapping tool that operates as a public database, offering a comprehensive risk layer to provide information on water-related risks based on GPS coordinates. This tool is focuses on three distinct risk types: physical, regulatory, and reputational. The tool examines three different scenarios: Optimistic, Current Trend, and Pessimistic, while considering two crucial aspects: climate change and socio-economic factors that influence water availability and use. Within JDE Peet's' scope, the tool specifically emphasizes physical risks by analysing 10 indicators. To anticipate future water conditions, we employ the tool's projection feature, which assesses water stress, water demand, water supply, and seasonal changes for upcoming years (2020, 2030, 2040, 2050). These assessments are conducted using various scenarios, incorporating changes in climate factors based on RCPs and changes in socioeconomic drivers according to SSPs.

W7.3a

(W7.3a) Provide details of the scenario analysis, what water-related outcomes were identified, and how they have influenced your organization's business strategy.

	Type of scenario analysis used	Parameters, assumptions, analytical choices	Description of possible water-related outcomes	
Row	Water-related	The Water Risk Tool and	Considering all	Our Responsible
1	Climate-related	the WRI Aqueduct tool	scenarios, there are	Sourcing program
	Socioeconomic	both support the creation	multiple possible	already invests in
		of future water scenarios	outcomes. We, however,	addressing these
		and the key priorities	prepare for a worst-case	challenges today.
		along those lines. We	4°C scenario (RCP 8.5).	Through our farmer
		updated our analysis to	In such a case -	projects, we ensure
		include the latest figures	precipitation patterns are	that the most relevant
		from our internal analysis	likely to change in many	topics locally are
		to prioritize the right	key coffee-growing	addressed. This ranges
		factories, sourcing	regions, increasing the	from topics on waste-
		regions and basins for	risk of droughts and the	water quality to
		our strategy to focus on.	need for irrigation. This	availability and access
		In the scenario analysis,	could have impacts on	for farmers locally. Our
		different drivers have	coffee yields as well as,	projects address issues

been considered, among others the water volumes, internal growth projections, alignments with local factory operators but also external drivers such as GDP and population density through the WWF Water Risk Filter. The outside-in, combined with the inside-out view with a mix of quantitative and qualitative data provide a good overview of the current and future waterrelated outcomes.

importantly, on the livelihoods of many smallholder farmers who grow coffee.

In addition, while most of our categories use relatively little water in the manufacturing process, water stress could also impact our own operations in the longer term. Increased regulatory pressures, due to physical risk can lead to increased prices and competition for water in the future. We therefore carefully assess (and report on) the exposure of our operations to current and potential future water stress. And we place a focus on the efficient use of water in our operations, with a particular emphasis on the production of instant coffee, which is more water intensive.

With water quality becoming under increased pressure, we expect bigger reputational scrutiny to come on organizations that don't actively managed their wastewater discharge. Leading to potential claims, brand damage or environmental fines.

locally and ensure farmers are supported with issues today on water availability, quality or access, and also equipped for changing weather patterns in the future.

With regards to our own operations for water availability, we have created a roadmap on initiatives required to meet our 18% water intensity reduction target by 2030. This is enabled with an investment timeline and a clear goal on when which projects need to happen.

To ensure water quality became a more important topic internally, we have also set targets to ensure all our waste-water is treated by ourselves or a third party. We will invest in the coming years to perform our due diligence and make sure waste-water is actively managed at JDE Peet's.

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, but we are currently exploring water valuation practices

Please explain

Together with our exploration on internal carbon pricing, we are also considering to put a true value of water in our capital expenditure process. Considered is the Ecolab Smart Water Navigator to review if we would make different decisions if we would put an internal carbon price in place.

W7.5

(W7.5) Do you classify any of your current products and/or services as low water impact?

	Products and/or services classified as low water impact	Primary reason for not classifying any of your current products and/or services as low water impact	Please explain
Row 1	No, and we do not plan to address this within the next two years	Judged to be unimportant, explanation provided	The water footprint of coffee is 99% dependent on the cultivation stage of which 96% is rainfed, whilst our manufacturing and use-phase account for <1% of the total water footprint. Significant impact can only be made in drinking less coffee or less coffee per serving, e.g. instant coffee uses about 2 grams of coffee per cup, vs. coffee capsules 5 grams. The consideration of water as part of product development is seen as unimportant, considering the nature of its footprint.

W8. Targets

W8.1

(W8.1) Do you have any water-related targets?

Yes

W8.1a

(W8.1a) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

	Target set in this category	Please explain
Water pollution	Yes	
Water withdrawals	Yes	
Water, Sanitation, and Hygiene (WASH) services	Yes	
Other	No, but we plan to within the next two years	The pilot on SBTN is closing in Q1 2024, which will enable us to set context-based targets for water where applicable. We are currently investigating the most material topics related to water and the requirement of setting these targets.

W8.1b

(W8.1b) Provide details of your water-related targets and the progress made.

Target reference number

Target 1

Category of target

Water withdrawals

Target coverage

Company-wide (direct operations only)

Quantitative metric

Reduction in total water withdrawals

Year target was set

2022

Base year

2020

Base year figure

7,170,385

Target year

2030

Target year figure

5,879,716

Reporting year figure

6,915,624

% of target achieved relative to base year

19.7386781584

Target status in reporting year

Underway

Please explain

We have updated our target this year to reflect the base year and target year. The target is to reduce our water withdrawal intensity by 18% by 2030. Last year we have reached -6%, which is in line with the projections to reach 18% by 2030.

Target reference number

Target 2

Category of target

Water pollution

Target coverage

Company-wide (direct operations only)

Quantitative metric

Increase in proportion of wastewater that is safely treated

Year target was set

2023

Base year

2023

Base year figure

Target year

2030

Target year figure

100

Reporting year figure

% of target achieved relative to base year

Target status in reporting year

New

Please explain

In 2023 we have set a new target to treat all of our wastewater before being discharged by 2030. The KPI will be measured as factories that treat their discharge compared to the total amount of factories.

Target reference number

Target 3

Category of target

Water, Sanitation and Hygiene (WASH) services

Target coverage

Company-wide (direct operations only)

Quantitative metric

Increase in the proportion of employees using safely managed drinking water services

Year target was set

2023

Base year

2023

Base year figure

Target year

2030

Target year figure

100

Reporting year figure

% of target achieved relative to base year

Target status in reporting year

New

Please explain

In 2023 we have set a new target to ensure our employees at our manufacturing operations have access to safely managed Water, Sanitation and Hygiene (WASH) facilities by 2030

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

No, we do not currently verify any other water information reported in our CDP disclosure

W10. Plastics

W10.1

(W10.1) Have you mapped where in your value chain plastics are used and/or produced?

	Plastics mapping	Value chain stage	Please explain
Row 1	Yes	Direct operations Supply chain Product use phase	We have built a global packaging consumption reporting tool which monitors by sales market where we are using any type of plastics. This tool casacades from end market back to source (production plant, supplier, type of material, etc. with all specifications) to have the full value chain mapped. Information is updated daily & covers all JDEP entities on our ERP systems - those not yet integrated are manually reported & overlayed into our carbon accounting tool.

W10.2

(W10.2) Across your value chain, have you assessed the potential environmental and human health impacts of your use and/or production of plastics?

	Impact assessment	Please explain
Row 1	Not assessed – but we plan to within the next two years	We adhere to strict quality & compliance standards with all of our products/components being used & store all DoC's in our specification system. All necessary food compliance checks are done prior to deployment of products into any market.
		We have not directly conducted impact assessments on our products/components using plastics to date and instead require our suppliers to provide legal evidence of necessary assessments.
		We do have plans to perform further testing (on top of compliance required) on our products destined for industrial composting within the next years.

W10.3

(W10.3) Across your value chain, are you exposed to plastics-related risks with the potential to have a substantive financial or strategic impact on your business? If so, provide details.

	Risk exposure	Value chain stage	Type of risk	Please explain
Row 1	Yes	Direct operations Product use phase	Regulatory Reputational	We have substantive financial/strategic exposure for our products that use plastics which are non-recyclable. We've done a complete inventory of our portfolio and have implemented global programs to convert non-recyclable plastic packaging to recyclable. This first as part of a public commitment and now as well in accordance with regulatory pressures (specifically within the EU - PPWR).

W10.4

(W10.4) Do you have plastics-related targets, and if so what type?

	Targets in place	Target type	Target metric	Please explain
Row 1	Yes	Plastic packaging Waste management	Reduce the total weight of plastic packaging used and/or produced Eliminate problematic and unnecessary plastic packaging Reduce the total weight of virgin content in plastic packaging Increase the proportion of post-consumer recycled content in plastic packaging Increase the proportion of plastic packaging Increase the proportion of plastic packaging Increase the proportion of plastic packaging that is recyclable in	We have two overarching targets/metrics for our packaging sustainability program to be achieved by 2030: 1) Convert the entire portfolio to either reusable, recyclable, or able to industrially compost 2) Reduce Scope 3 CO2eq emissions by 12,5% (increasing to ~-25% expected this year) These two overarching metrics feed into our ambitions for 2050 to have zero waste & be netzero. In order to achieve our commitments & ambitions nearly all of the target metric categorizations listed here must be enacted. We've selected those for which we have known initiatives and programs in place. Further, our two overarching metrics have multiple enablers & principles which roll up into the computation; for example increasing recycled content into plastics packaging reduces scope 3 emissions and contributes to principles of circularity (leading to zero waste).

practice and at scale Increase the proportion of plastic packaging that is reusable Increase the proportion of plastic packaging that is compostable Increase the proportion of recyclable plastic waste that is collected, sorted, and recycled in the community	targets regarding plastic use.
---	--------------------------------

W10.5

(W10.5) Indicate whether your organization engages in the following activities.

	Activity applies	Comment
Production of plastic polymers	No	
Production of durable plastic components	No	
Production / commercialization of durable plastic goods (including mixed materials)	No	
Production / commercialization of plastic packaging	No	
Production of goods packaged in plastics	Yes	In 2022 approximately 18% of our packaging material weight was plastic.
Provision / commercialization of services or goods that use plastic packaging (e.g., retail and food services)	Yes	In 2022 approximately 18% of our packaging material weight was plastic across the entire business. Excluding bio-plastics which is another 0.5%

W10.8

(W10.8) Provide the total weight of plastic packaging sold and/or used, and indicate the raw material content.

	Total weight of plastic packaging sold / used during the reporting year (Metric tonnes)	Raw material content percentages available to report	% virgin fossil- based content	% virgin renewable content	Please explain
Plastic packaging used	47,080	% virgin fossil- based content % virgin renewable content	97.6	2.4	We have moved away from using industry averages to justify recycled content in our packaging and use only supplier confirmed data. As a result, we've computed 0 recycled content in our plastic packaging. Additionally, only rPET is food-contact approved which we hardly use in our portfolio (relative to other type of plastics). Renewable content is used in the form of PLA which we have in our Senseo coffee pads & tea bags.

W10.8a

(W10.8a) Indicate the circularity potential of the plastic packaging you sold and/or used.

	Percentages available to report for circularity potential	% of plastic packaging that is technically recyclable	% of plastic packaging that is recyclable in practice at scale	Please explain
Plastic packaging used	% technically recyclable % recyclable in practice and at scale	11.38	11.38	We do not differentiate sold vs. used - it is our obligation to manage all plastic packaging along our value chain from production to end of life management

W11. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

W11.1

(W11.1) Provide details for the person that has signed off (approved) your CDP water response.

	Job title	Corresponding job category
Row 1	Chief Executive Officer	Chief Executive Officer (CEO)

Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

	I understand that my response will be shared with all requesting stakeholders	Response permission
Please select your submission options	Yes	Public

Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.

Yes, CDP may share our Main User contact details with the Pacific Institute

Please confirm below

I have read and accept the applicable Terms